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Abstract. We study the drift of a 180◦ domain wall in a ferrimagnet with two non-equivalent
sublattices in the elastic-stress field generated by an acoustic wave. The dependences of the drift
velocity on the amplitude and polarization of the acoustic wave have been obtained. The analysis of
long-wave and short-wave limits is carried out. The antiferromagnetic and ferromagnetic limits are
explored too. The conditions of the drift of a stripe domain structure in ferrimagnets are obtained.

There is continuing interest in the investigation of the dynamic properties of large-scale
magnetic inhomogeneities (domain structures, domain walls (DWs), magnetic solitons etc)
in magnetically ordered crystals [1], an important subclass being the interaction of magnetic
inhomogeneities with the elastic-stress field generated by an acoustic wave [2, 3].

The magnetoelastic interaction, coupling between the magnetic and elastic subsystems
of a crystal, results in: the excitation of acoustic and domain oscillations [3, 4], generation,
reradiation and scattering of the moving DW sound [5–8] and inversely, oscillatory and drift
motion of the DW itself in a field of an external sound wave [2, 9–11].

Through experimental investigations of direct action of a sound on domains and DWs
[12–14] the effects of linear oscillations of 180◦ DWs and their directional motion have
been observed. Note that while the experiments were carried out basically on garnet
ferrites, practically all theoretical calculations are made for one-sublattice ferromagnetics
(FMs) (the exceptions being [11], a two-sublattice weak ferromagnetic (WFM), and [2], an
antiferromagnet (AFM) near sublattice reorientation are considered).

Here the influence of an arbitrary polarized sound wave on 180◦ DWs in ferrimagnets
with two nonequivalent magnetic sublattices is theoretically investigated.

Consider an arbitrary polarized sound wave with arbitrary value of a wavevector k

propagating perpendicularly to the plane of a DW, the sound wave being an external field,
the inverse effect of the magnetic subsystem on the elastic subsystem being neglected.

The nonlinear macroscopic dynamics of a ferrimagnet with two nonequivalent sublattices
in the field of a sound wave can be described on the basis of a Lagrange density function L,
expressed in terms of the antiferromagnetism unit vector l, l2 = 1 [15]:

L(l) = M2
0

{
α̃

2c2
i2 − α̃

2
(∇l)2 − β1

2
l2z − β2

2
l2y − γ uikli lk +

ν

gM0

lzix − lxiz

1 + ly

}
(1)

where the dot denotes a derivative with respect to time, M2
0 = (M2

1 +M2
2 )/2, M0 is the length

of the sublattice magnetization vector, c = gM0

√
α̃δ/2 is the minimum spin-wave phase

velocity, δ and α̃ respectively, are the homogeneous- and inhomogeneous-exchange coupling
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constants, g is the gyromagnetic ratio, β1 and β2 (β2 > β1 > 0) are the effective constants of
rhombic anisotropy, uik is the elastic strain tensor, γ is the magnetoelastic constant,

ν = |M1 −M2|
M1,2

(2)

is the parameter of the dynamic ferrimagnet model [15]. The value of this parameter
ν � √

β/δ ∼ 10−2–10−1 is a validity criterion for this model, as a certain effective FM
with fixed length of a vector of a net magnetization MS = |MS | = |M1 +M2 + · · · | (where Mi

is the sublattice-magnetization vectors). A similar representation, taking into account a strong
exchange interaction between sublattices, is usually used when interpreting the experiments
on dynamics of nonlinear excitations in ferrimagnets. Near to a point of compensation of the
ferrimagnet, where the lengths of vectors of magnetization of sublattices differ insignificantly
(|M1−M2| � M1,2), the representation of ferrimagnet as effective FM becomes inadequate. If
the quantity of parameter ν is rather small (ν → 0), the dynamic properties of the ferrimagnet
are close to the properties of an AFM and essentially differ from properties of FM crystals.

Let us parametrize the vector l by angular variables θ and ϕ so that

lz = ilx = sin θ exp(iϕ) ly = cos θ. (3)

In terms of these variables one can note a Lagrange function density of the ferrimagnet (1):

L(θ, ϕ) = M2
0

[
α̃

2c2
[θ̇2 + ϕ̇2 sin2 θ ] − α̃

2
[(∇θ)2 + sin2 θ(∇ϕ)2] − β1

2
sin2 θ2ϕ − β2

2
cos2 θ

−γ {sin 2θ(uzy cosϕ + uyz sin ϕ) + uyy cos2 θ

+2 sin2 θ(uzz cos2 ϕ + uxx sin 2ϕ + uxx sin2 ϕ)} +
ν

gM0
ϕ̇(1 − cos θ)

]
(4)

and a function that takes into account the dynamic stopping of the DWs

Q = αM0

2g
i2 = αM0

2g
(θ̇2 + ϕ̇2 sin2 θ) (5)

where α is the dimensionless Gilbert damping constant.
The equations of motion in terms of the angular variables of vector l in view of relaxation

summands look like

α̃∇(sin2 θ(∇ϕ))− α̃

c2

∂

∂t
(ϕ̇ sin2 θ)− β1 sin2 θ sin ϕ cosϕ

− ν

gM0
θ̇ sin θ + γ {sin2 θ(uzz sin 2ϕ − 2uxz cos 2ϕ − uxx sin 2ϕ)

+ sin 2θ(uzy sin ϕ − uyx cosϕ)} = α

gM0
ϕ̇ sin2 θ (6)

α̃

(
�θ − 1

c2
θ̈

)
+ sin θ cos θ

[
α̃

(
1

c2
ϕ̇2 − (∇ϕ)2

)
− β1 sin2 ϕ + β2

]

+
ν

gM0
ϕ̇ sin θ − γ {sin 2θ(uzz cos2 ϕ + uxz sin 2ϕ + uxx sin2 ϕ − uyy)

+2 cos 2θ(uzy cosϕ + uyx sin ϕ)} = α

gM0
θ̇ . (7)

Equations (6) and (7) are a generalization of the equations of motion of FM and AFM
nonlinear dynamics in the field of a sound wave. If M1 = M2 (i.e. ν = 0), then the system (6),
(7) describes dynamics of a two-sublattice AFM; if we neglect the noncollinearity of the
sublattices (in a formal limit δ → ∞ (ν = 1)) they become the Landau–Lifshitz–Gilbert
equations for a one-sublattice FM with magnetization M = MSl. Taking this into account we
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carry out the nonlinear dynamics analysis of DWs in the field of a sound wave in both limit
cases.

We suggest that the DW, in which the vector l rotates in the plane of XZ, is stable and
the distribution of the magnetization is nonuniform along the Y axis. Such a DW corresponds
to β2 > β1 > 0 [15] and θ = θ0 = π/2, and the angular variable ϕ = ϕ0(y) satisfies the
following equation

αϕ′′
0 − β1 sin ϕ0 cosϕ0 = 0. (8)

The solution of equation (8) for a static 180◦ DW, satisfying the boundary conditions
ϕ0(−∞) = 0, ϕ0(+∞) = π is

ϕ′
0 = 1

y0
sin ϕ0 = 1

y0
cosh−1 y

y0
cosϕ0(y) = − tanh

y

y0
(9)

where y0 = √
α̃/β1 means a thickness of DW.

We seek the solutions of the equations of motion (6), (7) using the formalism of perturbation
theory for solitons [11, 16–18]. We introduce the collective variable Y (t) as the DW centre,
the derivative of which defines the instantaneous velocity of the DW V (t) = Ẏ (t). Assuming
the acoustic-wave amplitude to be small, we present functions θ(y, t), ϕ(y, t) and V (t) as a
expansion into a series on degrees of amplitude, meaning that we are interested only in a forced
motion

θ(y, t) = π

2
+ θ1(ξ, t) + θ2(ξ, t) + · · ·

ϕ(y, t) = ϕ0(ξ) + ϕ1(ξ, t) + ϕ2(ξ, t) + · · ·
V = V1(t) + V2(t) + · · · (10)

where ξ = y − Y (t); subscripts n = 1, 2, . . . denote the order of the quantity relative to the
sound-wave amplitude; the function ϕ0(ξ), that describes the motion of undistorted DW, has
a structure similar to the static solution (9). The functions θn and ϕn give the distortions of the
DW shape and the excitation of spin waves caused by interaction with the sound wave.

1. Linear oscillations

We substitute the expansions (10) into the system (6), (7) and separate terms of the different
orders of smallness. The equation of zero order describes DW at static rest.

Assuming that the monochromatic sound wave propagates perpendicularly to the plane of
the DW u = Re{u0 exp[i(kyy − ωt)]} the first-order equations are(
L̂ + σ +

1

ω2
1

d2

dt2
+
ωr

ω2
1

d

dt

)
θ1(ξ, t)− ωv

ω2
1

dϕ1(ξ, t)

dt
= − 1

y0ω
2
1

ωvV1 sin ϕ0

+
ikγ

β1
exp[i(k(Y + ξ)− ωt)](u0x sin ϕ0 + u0z cosϕ0) (11)

(
L̂ +

1

ω2
1

d2

dt2
+
ωr

ω2
1

d

dt

)
ϕ1(ξ, t) +

ωv

ω2
1

dθ1(ξ, t)

dt
= − 1

y0ω
2
1

(V̇1 + ωrV1) sin ϕ0 (12)

where ω1 = c/y0 = gM0
√
βδ/2, ωr = αδgM0/4, ωv = νδfM0/4 are frequency

characteristics of the material, k = ky = ω/s is the sound wavevector, ω and s are the
frequency and velocity of the wave respectively and σ = (β2 − β1)/β1. Operator

L̂ = −y0
d2

dξ 2
+ 1 − 2

cosh2(ξ/y0)
(13)



3122 V S Gerasimchuk and A A Shitov

has known normalized wavefunctions and a spectrum [19]

f0(ξ) = 1√
2y0

cosh−1 ξ

y0
λ0 = 0

fp(ξ) = 1

bp
√
L

(
tanh

ξ

y0
− ipy0

)
exp(ipξ) λp = 1 + p2y2

0 (14)

where bp =
√

1 + p2y2
0 , L is the length of the crystal.

We seek the solution to the system of equations of the first approximation (11), (12) as an
expansion over a complete orthonormal set of eigenfunctions{f0(ξ), fk(ξ)}

θ1(ξ, t) = Re

{ ∑
p

[c(1)p fp(ξ) + c
(1)
0 f0(ξ)] exp[i(ky − ωt)]

}
(15)

ϕ1(ξ, t) = Re

{ ∑
p

[d(1)p fp(ξ) + d
(1)
0 f0(ξ)] exp[i(ky − ωt)]

}
. (16)

We should note that d(1)0 in the expansion (16) corresponds to the shear (Goldstone) mode.
However, when introducing the collective coordinate Y (t) in the definition of ξ this degree of
freedom has already been taken into account. Therefore it is necessary to put d(1)0 = 0 in the
expansion (16).

Using a standard procedure of definition of coefficients in expansions (15), (16) we obtain
the solutions of the first-order equations (11), (12) as

ϕ1(ξ, t) = γπk2y0

2βi
Re{B1(ξ) exp[i(kY − ωt)]} (17)

θ1(ξ, t) = γπk2y0

2βi
Re{B2(ξ) exp[i(kY − ωt)]} + Re{A(ξ) exp[i(kY − ωt)]}. (18)

Here we have introduced the notations

A = 1

y0ω
2
1

iq3�V̇1 + ωrV1� − qωvV1

(σ − q)q + q2
3

sin ϕ0

B1(ξ) = −y0

π
q3[u0zD1(ξ) + iu0xD2(ξ)] + q3b1fk(ξ)

B2(ξ) = −y0

π
[u0zD3(ξ) + iu0zD4(ξ)] + b2fk(ξ) + b3 sin ϕ0

D1(ξ) =
√
L

∫ ∞

−∞
dp fp(ξ)

3(p, q)

sinh[πy0(k − p)/2]

D2(ξ) =
√
L

∫ ∞

−∞
dp fp(ξ)

3(p, q)

cosh[πy0(k − p)/2]

D3(ξ) =
√
L

∫ ∞

−∞
dp fp(ξ)

3(p, q)(λp − q)

cosh[πy0(k − p)/2]

D4(ξ) =
√
L

∫ ∞

−∞
dp fp(ξ)

3(p, q)(λp − q)

sinh[πy0(p − k)/2]

b1 = 2
√
Lu0z3(k, q)

πky0
b2 = −i(λk − q)b1

b3 = q

(σ − q)q + q2
3

[
u0z

cosh(πky0/2)
+

iu0x

sinh(πky0/2)

]
(19)
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where

3(p, q) = {bp[(λp − 1)(λp − 1 + σ) = q2
3 ]}−1 q = q1 + iq2 q1 =

(
ω

ω1

)2

q2 =
(
ωωr

ω2
1

)
q3 =

(
ωωv

ω2
1

)
.

From (17)–(19) the acoustic wave propagates perpendicularly to rotation planes of a vector
l in the DW, exciting the localized and non-localized spin waves. And these excitations are
provided only with transversal acouctic oscillations.

Proceeding from the requirement of vanishing of the Goldstone mode amplitude (d(1)0 = 0),
that is equivalent to a requirement of orthogonality of the right side of the equation (12) to
eigenfunction f0(ξ), we obtain the equation for definition of the velocity of the DW

V̇1(t) +

(
ωr − iq3ωv

σ − q

)
V1(t) = πγ (ky0)

2q3ω
2
1

2β1(σ − q)

[
u0x

sinh(πky0/2)
− iu0z

cosh(πky0/2)

]

× exp[i(kY − ωt)]. (20)

The equation (20) is a generalization of the corresponding equations for a one-sublattice
FM and two-sublattice AFM. Its solution is

V1(t) = γ q3(ky0)
2πω2

1

2β1(σ − q)(ωr − iω − iq3ωv/(σ − q))

[
u0x

sinh(πky0/2)
− iu0z

cosh(πky0/2)

]

× exp[i(kY − ωt)]. (21)

Thus to first order of perturbation theory the DW velocity is V1(t) ∼ ν. This means that
in the AFM limit V AFM

1 (t) = 0, i.e. in the geometry of the problem considered, to first order
the sound wave does not generate oscillations of DWs in a two-sublattice AFM. The similar
situation also takes place in the WFM [11]. In the FM limit the equation (20) is reduced to

V̇1(t) + ωv

(
α − iq3

σ − iαq3

)
V1(t) = πγω2

0q3δ(ky0)
2

8β2
1 (σ − iαq3)

[
u0x

sinh(πky0/2)
− iu0z

cosh(πky0/2)

]

× exp[i(kY − ωt)] (22)

where ω0 = β1gM0. This equation has the solution

V1(t) = γ q3δ(ky0)
2πω2

0

8β2
1 (σ − iαq3)(αωv − iω − iq3ωv/(σ − iαq3))

[
u0x

sinh(πky0/2)
− iu0z

cosh(πky0/2)

]

× exp[i(kY − ωt)]. (23)

Using expressions (21) and (23) it is possible to find a displacement of the DW y(t) for
the frequency period:

y(t) = πγ (ky0)
2ωv

2βi[Q2
1 + Q2

2]

[ (
Q1u0x

sinh(πky0/2)
+

Q2u0z

cosh(πky0/2)

)
sin(kY − ωt)

+

(
Q2u0x

sinh(πky0/2)
− Q1u0z

cosh(πky0/2)

)
cos(kY − ωt)

]
(24)

where in the FM limit Q1 = ασωv , and Q2 = q3ωv(1 − α2); in the case of a ferrimagnet
Q1 = ωr(σ − 2q1), Q2 = ωvq3 + ω(σ − q1) − ωrq2. In particular for gadolinium garnet
(Gd3Fe5O12) the mean value of the displacement modulus at frequency ω ∼ 106 s−1 at
ν = 2 × 10−2 and ν = 2 × 10−3 is 10−8 cm is 10−9 cm, respectively. In the FM limit
at the same frequency the displacement is 10−6 cm. The obtained mean values of the modulus
of displacement agree well with [20].
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2. Nonlinear motion of DW

The second-order equations for functions θ2(ξ, t) and ϕ2(ξ, t) are

L̂ϕ2 = − ikγ

β1
exp[i(k(Y + ξ)− ωt)]θ1(u0z sin ϕ0 − u0x cosϕ0)− 2y0θ1θ

′
1 sin ϕ0

+
1

ω2
1

(V̇1 + ωrV1)ϕ
′
1 +

1

y0ω
2
1

(V̇2 + ωrV2) sin ϕ0 + ϕ2
1 sin 2ϕ0

+
ωv

ω2
1

V1θ
′
1 − 1

ω2
1y

2
0

V 2
1 sin ϕ0 cosϕ0 (25)

(L̂ + σ)θ2 = − ikγ

β1
exp[i(k(Y + ξ)− ωt)][2θ1u0y + ϕ1(u0z sin ϕ0 − u0x cosϕ0)]

+
1

ω2
1

(V̇1 + ωrV1)θ
′
1 + 2y0θ1ϕ

′
1 sin ϕ0 + θ1ϕ1 sin 2ϕ0

−ωv

ω2
1

(
V1ϕ

′
1 +

1

y0
V2 sin ϕ0

)
. (26)

One can seek solutions of these equations, here as in (11), (12), as an expansion in the
eigenfunctions of the operator L̂ (15), (16).

A complete solution of system (25), (26) is not attempted here but we present only the
DW velocity in the second order of perturbation theory V2(t). To determine the velocity V2(t)

it is enough to find the coefficient d(2)0 describing the Goldstone mode in the expansion

ϕ2(ξ, t) = Re

{ ∑
p

[d(2)p fp(ξ) + d
(2)
2 f0(ξ)] exp[i(ky − ωt)]

}
(27)

and to equate it to zero (i.e. d(2)0 = 0). Then by using (17)–(19) the equations for V2(t) can be
written as

V̇2(t) + ωrV2 = N + N1 exp(2iωt) + N2 exp(−2iωt) (28)

where

N = Re

[ ∫ ∞

−∞
dξ sin ϕ0

{
ikγω2

1

2β1
exp[i(k(Y + ξ)− ωt)]θ1(ξ, t)(u0z sin ϕ0 − u0x cosϕ0)

−V1
ωv

2
θ ′

1(ξ, t) + ω2
1y0θ1(ξ, t)θ

′
1(ξ, t) sin ϕ0

−1

2
(V̇1 + ωrV1)ϕ

′
1(ξ, t)− ω2

1ϕ
2
1(ξ, t) sin ϕ0 cosϕ0

}]
. (29)

The explicit forms of expressions for N1 and N2 which are similar to (29) are not required
here because N1 and N2 vanish after further time averaging the solution of equation (28).

After integrating equation (28) and averaging over the period of oscillations of the obtained
result the DW drift velocity in the field of an acoustic wave becomes

Vdr = V2(t) = µxx(k)(ku0,x)
2 + µxz(k)(ku0x)(ku0z) + µzz(k)(ku0z)

2 (30)

where µij (k) are nonlinear mobility (NM) DWs in the field of an acoustic wave.
Since the analysis of the general expressions for µij (k) is not productive we consider the

asymptotic cases.
In the long-wave approximation (that is the most interesting from the point of view of

experiment (ky0 � 1)) corresponding to the frequency range ω = sk � 1010 s−1, the
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expressions for NM are reduced to

µxz(k) = µ0[A(k) + F(k)]

µxx(k) = µ0
3ky0q2

(σ + 1)2σ 2
µzz(k) = −µ0

4ky0q2

(σ + 1)2σ 2
(31)

where

µ0 = ν0
δ(γM0)

2

4β1
ν0 = πy0g

2

4ωr

A(k) = − 2(ky0)
2

σ 2(σ + 1)2

F(k) = − q4
3

2(σ + 1)2(σ 2α2 + q2
3 )
.

Since µxx ∼ µzz ∼ q2 � ky0 � 1, it is obvious that the principal contribution to the DW
drift velocity (30) gives µxz(k). The structure of expressions (31) underlines the fact that the
NM of a ferrimagnet is formed by terms of ferromagnetic F(k) and antiferromagnetic A(k)
origin, each of which provides the NM in the corresponding limit.

Indeed, in the AFM-limit (ν → 0) the second term on the right side of expression (31)
becomes zero and the explicit view NM νAFMij (k) is obtained

µAFM
xz (k) = −µ0

2(ky0)
2

σ 2(σ + 1)2

µAFM
xx (k) = µ0

q2ky0

10σ 2
µAFM
zz (k) = µ0

q2ky0

3σ 2
. (32)

The expressions (32) coincide, apart from notational differences, with the corresponding
expressions for the WFM [11], if we neglect in the latter the Dzyaloshinskii interaction. The
frequency dependence of NMµAFM

xz (k) in the long-wave approximation is shown in figure 1(a).

In the FM limit (δ → ∞, ν → 1) the first term in expression (31) becomes zero and the
NM µFM

ij (k) becomes

µFM
xz (k) = −µ0

q4
3

2(σ + 1)2(σ 2α2 + q2
3 )

µFM
xx (k) = µ0

5ky0q2

(σ + 1)2(σ 2α2 + q2
3 )

µFM
zz (k) = −µ0

3ky0q2q
2
3

4(σ + 1)(σ 2α2 + q2
3 )
. (33)

The expression for the drift velocity (30) using µFM
ij (k) from (33) is in qualitative

agreement with the corresponding expression obtained in [10] directly for the one-sublattice
FM. There cannot be a complete quantitative coincidence, since in [10] the approximate
equations of Slonczewski and the slightly different conditions of deriving the required velocity
are used. The frequency dependence of NMµFM

xz (k) in the long-wave approximation is shown
in figure 1(b).

One can see from figure 1(a) and 1(b) that the nonlinear mobility of the DW, as well as
the drift velocity (30), monotonically grow with increasing sound wave frequency both in the
AFM and FM limits.

Let us give the numerical estimations of nonlinear mobility and drift velocity of the DW.
In the AFM limit we use the numerical values of parameters characterizing a ferrimagnet
near the compensation point (for example, Gd3Fe5O12 [21]): y0 ≈ 10−4 cm, M0 = 10 Oe,
γM2

0 ∼ 107 erg cm−3, g = 1.76 × 107 (s Oe)−1, ω1 ∼ 1011 s−1, ωr ∼ 108 s−1. These
values of parameters correspond to µ0 = 0.9 × 1014 cm s−1. At the typical sound velocity
s ∼ 105 cm s−1 and the maximum admissible value of the strain tensor ku0 ∼ 10−5 the DW
drift velocity in the AFM limit is equal to 10 cm s−1.
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(a)

(b)

Figure 1. (a) Frequency dependence of the second-order mobility µAFM
xz in the antiferromagnetic

limit (ky0 � 1). (b) Frequency dependence of the second-order mobilityµFM
zz in the ferromagnetic

limit (ky0 � 1).

In the FM limit we use the typical values of parameters of a ferrimagnet far from the
compensation point (for example, (YFe5O)) [21]: y0 ≈ 5 × 10−5 cm, M0 = 140 Oe,
γM2

0 ∼ 107 erg cm−3, g = 1.76 × 107 (s Oe )−1, ω0 ≈ 3 × 109 s−1, ωr ∼ 1010 s−1.
These values of parameters correspond to µ0 = 0.3 × 1012 cm s−1. At the same parameters
of the acoustic wave the drift velocity is 0.3 cm s−1.

The drift velocity in ferrimagnet (Y,Sm,Ca)3(Fe,Ge)5O12 [21] at ν ∼ 10−2–10−3 is
1 cm s−1.
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(a)

(b)

Figure 2. (a) Frequency dependence of the second-order mobility µAFM
xz in the antiferromagnetic

limit (ky0 � 1). (b) Frequency dependence of the second-order mobilityµFM
xz in the ferromagnetic

limit (ky0 � 1).

In the short-wave approximation (ky0 � 1), corresponding to the hypersonic frequencies
ω � 1011 s−1, the nonlinear mobilities of the ferrimagnet decrease as ω−4:

µxz = −µ0
2

(ky0)4
µxx = −µ0

q2

ky0q
2
1

µzz = −µ0
4q2

πky0q
2
1

(34)

and the value of the effect in this case is inversely proportional to the square of the frequency,
which agrees with [22].

The expressions for mobilities in the corresponding limits are

AFM limit: µxz = −µ0
2

(ky0)4
µxx = −µ0

2q2

5(ky0)5
µzz = −µ0

2q2

π(ky0)5
(35)
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FM limit: µxz = −µ0
1

q2
3

µxx = µ02q2

2(ky0)5
µzz = −µ0

2α

π(ky0)q3
. (36)

The frequency dependence for maximal NM µxz(k) in the short-wave approximation is
shown in figures 2(a) and (b) for the AFM and FM limits, respectively.

3. Drift of a stripe-domain structure

We now consider the possibility of drift in a sound-wave field of a stripe domain structure
(SDS) consisting of 180◦ DWs. It is necessary to keep in mind that neighbouring DWs in
such a structure have opposite topological charges, which are determined by the boundary
conditions to the equation (8). Besides the rotation of vector l in various DWs can be about
the positive or the negative direction of the Z axis. These two factors determine the DW drift
direction in a field of fixed frequency ω. SDS drift is possible only if neighbouring DWs move
in the same direction.

We define the topological DW chargeR = ±1 and the parameter ρ = ±1, which describes
the direction of rotation of vector l in a DW, as follows: lz(y = ±∞) = ∓R, lx(y = 0) = ±ρ.

The DWs considered in the previous sections, with distribution of magnetization (9)
correspond to R = ρ = +1. Generally, instead of (9) we obtain

ϕ′
0 = 1

y0
R sin ϕ0 = 1

y0
Rρ cosh−1 y

y0
cosϕ0(y) = −R tanh

y

y0
. (37)

The analysis shows that in the general case the drift velocity of a DW, for a ferrimagnet
and its two extreme cases, with given values of parameters R and ρ, is presented as:

Vdr = µxx(k)(ku0x)
2 + Rρµxz(k)(ku0x)(ku0z) + µzz(k)(ku0z)

2. (38)

Since the dominant contribution to the drift velocity is provided by the off-diagonal
mobility µxz, for the corresponding term in (38) to be the same for all DWs and for all
the DWs in the structure to drift in the same direction, it is necessary that the parameters ρ in
the neighbouring DWs as well as the topological charges R, must be unlike, i.e. the rotation
of a vector l in the neighbouring DWs should be in the same direction. The similar situation
(the possibility of drift of the DS in the field of the acoustic wave) was observed in a WFM in
[11].
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[1] Hubert A and Schäfer R 1998 Magnetic Domains. The Analysis of Magnetic Microstructures (Berlin: Springer)
p 698

[2] Bar’yakhtar V G and Ivanov B A 1975 Fiz. Met. Metalloved. 39 478
[3] Lugovoy A A and Turov Ye A 1986 Magnetoacoustic Resonance of Domain Walls: Dynamic and Kinetic

Properties of Magnetics ed S V Vonsovsky and A Ye Turova (Moscow: Nauka) pp 164–97
[4] Gurevich L E and Liverts E V 1985 Zh. Eksp. Teor. Fiz. 88 1257
[5] Nedlin G M and Shapiro R Kh 1976 Fiz. Tverd. Tela 18 1696 (Engl. transl. 1976 Sov. Phys.–Solid State 18 985)
[6] Mitin A V and Tarasov B A 1977 Zh. Eksp. Teor. Fiz. 72 793
[7] Turov Ye A and Lugovoy A A 1980 Fiz. Met. Metalloved. 50 903
[8] Yeh R J, Wigen H E and Dötch H 1982 Solid State Commun. 44 1183
[9] Gorobets Yu I and Denisov S I 1990 Ukr. Fiz. Zh. 35 271

[10] Denisov S I 1989 Fiz. Tverd. Tela 31 270 (Engl. transl. 1989 Sov. Phys.–Solid State 31 1992)
[11] Gerasimchuk V S and Sukstanskii A L 1994 Zh. Eksp. Teor. Fiz. 106 1146 (Engl. transl. 1994 Sov. Phys.–JETP

79 622)
[12] Vlasko-Vlasov V K and Tikhomirov O A 1990 Fiz. Tverd. Tela 32 1678 (Engl. transl. 1990 Sov. Phys.–Solid

State 32 978)
[13] Vlasko-Vlasov V K and Tikhomirov O A 1991 Fiz. Tverd. Tela 33 3498



DWs in ferrimagnets in field of acoustic wave 3129

[14] Chetkin M V, Lykov V V, Makovozova A A and Belonogov A G 1991 Fiz. Tverd. Tela 33 307
[15] Ivanov B A and Sukstanskii A L 1983 Zh. Eksp. Teor. Fiz. 84 370
[16] Bar’yakhtar V G, Gorobets Yu I and Denisov S I 1990 Zh. Eksp. Teor. Fiz. 98 1345 (Engl. transl. 1990 Sov.

Phys.–JETP 71 751)
[17] Gerasimchuk V S and Sukstanskii A L 1993 Zh. Eksp. Teor. Fiz. 103 151 (Engl. transl. 1993 Sov. Phys.–JETP

76 82)
[18] Gerasimchuk V S and Sukstanskii A L 1995 J. Magn. Magn. Mater. 146 323
[19] Winter I M 1961 Phys. Rev. 124 452
[20] Bar’yakhtar V G, Ivanov B A, Kim P D, Sukstanskii A L and Khvan D Ch 1983 Pis. Zh. Eksp. Teor. Fiz. 37 35

(Engl. transl. 1983 JETP Lett. 37 41)
[21] Krupicka S 1973 Physik der Ferrite und der Verwandten Magnetischen Oxide (Prague: Academia) p 504
[22] Gerasimchuk V S and Gorobets Yu I 1979 Ukr. Fiz. Zh. 24 289 (in Russian)


